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Fluorescence tomography (FT) is depth-resolved three-dimensional (3D) localization and quantification
of fluorescence distribution in biological tissue and entails a highly ill-conditioned problem as depth in-
formation must be extracted from boundary measurements. Conventionally, L2 regularization schemes
that penalize the Euclidean norm of the solution and possess smoothing effects are used for FT recon-
struction. Oversmooth, continuous reconstructions lack high-frequency edge-type features of the original
distribution and yield poor resolution. We propose an alternative regularization method for FT that
penalizes the total variation (TV) norm of the solution to preserve sharp transitions in the reconstructed
fluorescence map while overcoming ill-posedness. We have developed two iterative methods for fast 3D
reconstruction in FT based on TV regularization inspired by Rudin–Osher–Fatemi and split Bregman
algorithms. The performance of the proposed method is studied in a phantom-based experiment using
a noncontact constant-wave trans-illumination FT system. It is observed that the proposed method per-
forms better in resolving fluorescence inclusions at different depths. © 2012 Optical Society of America
OCIS codes: 100.3190, 100.6950, 170.3010, 170.5280.

1. Introduction

Fluorescence tomography (FT) is an emerging three-
dimensional (3D) optical imaging modality used for
in vivo noninvasive depth-resolved localization and
quantification of fluorescent-tagged inclusions, e.g.,
cancer lesions and test drugs, buried a few centi-
meters deep in biological tissue. FT is extensively
employed in early cancer detection as well as drug
monitoring and discovery [1,2]. In this imaging tech-
nique, the tissue is illuminated with red visible or
near infrared light at different boundary locations at
the excitation wavelength of exogenously adminis-
tered fluorophores that label target inclusions. The
fluorescent signal emitted by fluorophore probes is
collected at several locations on the skin. These

surface measurements are then used in an inversion
algorithm to reconstruct the 3D distribution of fluor-
ophores in the tissue [1].

Reconstructing the 3D fluorescent distribution from
boundary measurements is a highly ill-conditioned
problem, as depth information should be extracted
from data collected on the surface [1]. Therefore,
inverse solvers resort to regularization techniques
[3] to overcome ill-posedness and minimize artifacts
and errors arising from the ill-posed nature of the pro-
blem. Conventionally, Laplacian [4] and Tikhonov [5]
regularization methods that penalize L2 norm of the
solution or a linear transformation of the solution,
and therefore compromise accuracy for stability [3],
have been used for 3D reconstruction in FT. These
L2 norm regularization algorithms entail smoothing
effects and result in continuous and spatially over-
spread reconstructions while damping out noise-
induced artifacts. They filter out the high-frequency
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and edge-type features of the fluorescence distribu-
tion and impair the resolution offered by FT recon-
struction while removing artifacts caused by noise
and modeling errors [3]. Results reported for 3D FT
reconstructions using Laplacian and Tikhonov regu-
larization methods [4,5] possess negligible spreading
and are relatively well-resolved in shallow depths.
However, as the depth of the fluorescent inclusions in-
creases, the need for stronger regularization rises,
which in turn results in high spatial spreading and
poor resolution. As a result, the resolution of L2 reg-
ularization algorithms degrades as the depth of the
inclusions increases. Structural and anatomical priors
have been used to improve the performance of L2
norm regularization methods and adapt the regular-
ization parameters to the geometry and a priori infor-
mation of the FT problem. This has been shown to
greatly enhance the accuracy of 3D reconstructions
in a few studies [6–9]. However, the performance of
adaptive methods relies on availability of priors.
Thus, in problems with limited or error-contaminated
priors, adaptive methods cannot perform optimally.

While L2 regularization is used extensively for
FT reconstruction, regularization of the FT inverse
problem using other Lp norms has been a subject of
study in recent years [10,11]. Among them, L1 regu-
larization has been shown to perform optimally for
reconstruction of sparse and localized fluorescent
distributions in scenarios such as early-stage cancer
detection [11]. Various implementations of L1 regu-
larization have been applied to FT and shown to
improve 3D reconstruction of sparse fluorophore
distributions [11–14]. Optimal performance of L1
regularization methods is limited to scenarios with
sparsity priors and cannot be applied to general
cases with nonlocalized extended fluorescent distri-
butions. Row-action iterative inversion algorithms
are also extensively used for FT reconstruction,
among which algebraic reconstruction techniques
(ARTs) [15], notable for their memory efficiency and
speedy convergence, have been shown to yield fast
and stable reconstructions in FT [16,17]. Neverthe-
less, the performance of ART deteriorates with
increase in modeling errors and data noise level.
ARTs do not possess strong regularizing power
and are not suitable for performing reconstructions
on noisy data and error contaminated models.

In this paper, we report the use of total variation
(TV) regularization for FT reconstruction where
the TV seminorm of the solution is penalized to sta-
bilize the reconstruction against artifacts and errors
in data and modeling. While application of TV regu-
larization to nonlinear FT and use of TV seminorm
jointly with L1 norm as penalty terms for regulariza-
tion have been the subject of very recent studies
[18,19], the use of TV regularization has not been
studied for linear FT to our knowledge. We apply
the proposed TV regularization technique to
two-dimensional (2D) simulated FT data with
different noise levels and compare its performance
with conventional regularization and iterative

reconstruction techniques. Moreover, we investigate
the performance of TV regularization in 3D recon-
struction of fluorescent inclusions in a phantom-
based experiment where two fluorophore-filled tubes
are placed inside a liquid tissue phantom that is ex-
cited by near infrared laser radiation and imaged by
a noncontact cooled charged-coupled device (CCD)
camera. We compare the performance of the proposed
method with conventional regularization techniques
in reconstructing the fluorescent tubes at different
depths.

2. Theory and System Modeling

Propagation of near infrared light in diffusive media
like biological tissue can be mathematically modeled
by the diffusion approximation to radiative transfer
equation [20], which yields a first order partial differ-
ential equation that describes the behavior of diffu-
sive photons as follows:

∇ ·D�r�∇Φ�r� − μa�r�Φ�r� � −q�r�; (1)

where Φ�r� represents the average light intensity,
μa�r� is the absorption coefficient, D�r� is the diffu-
sion coefficient, and q�r� is the source strength at
location r [1,20]. By applying the finite element
method to Eq. (1) and discretizing the tissue volume
using a tetrahedral mesh, we can relate the fluoro-
phore concentration at each voxel to the surface
measurements of emitted fluorescent light intensity
through a linear system of equations [21]. Surface
measurements consist of fluorescent signal intensity
readings Φ�r� on the boundary of the turbid medium
at detector locations. Fluorophore concentration at
each voxel multiplied by the quantum efficiency of
the fluorophore and the intensity of excitation light
yields q�r�. Hence, using prior knowledge of μa�r� and
D�r� values in the medium, boundary measurements
of Φ�r� can be related to q�r� and in turn, to fluoro-
phore concentration at each voxel through a linear
operator. More details about the linear model of
FT can be found in Appendix A and [21].

When a tetrahedral finite element (FE) mesh is
used to discretize the turbid medium, all the quanti-
ties are transformed into discrete vector quantities.
For a mesh with K voxels, the fluorophore concentra-
tion at each voxel is stacked in the K × 1 vector x. For
Ns source positions and Nd detector positions, there
are Ns ×Nd surface measurements that are usable
as data for FT reconstruction and are represented
by the NsNd × 1 vector y, and the noise and modeling
errors present in the measurements are represented
by the NsNd × 1 vector n. Therefore, the linear model
relating fluorophore concentrations to surface mea-
surements using the discretized version of Eq. (1)
can be expressed in the form of an NsNd × K system
matrix M, which depends on the optical properties
of the tissue and the measurement geometry [21]
as follows:

y � Mx� n: (2)
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FT reconstruction methods aim at estimating the
fluorophore distribution x using data vector y, system
matrix M, and statistical priors on n. Since M is a
highly ill-conditioned matrix with a relatively large
condition number [1,3,4], unbiased estimation techni-
ques, such as nonregularized weighted least squares
[22], result in unstable and artifact-contaminated
reconstructions. Therefore, inverse solvers use regu-
larized least-squares techniques that penalize the
norm of a linear transformation of the solution along
with the data fidelity term to avoid unstable solutions
as formulated below:

min
x

‖y −Mx‖2 � λ2‖Lx‖2; (3)

where is λ the regularization parameter, and L is the
regularization weight matrix.

The norm used for the data fidelity term ‖y −Mx‖
is usually chosen to be L2 to provide a least-squares
fit to the data. The norm for the penalty term λ2‖Lx‖,
with a linear operator L acting on the solution vector
x is conventionally selected to be L2 [3–5] while re-
cently other Lp (p ≠ 2) norms have been used for
cases with specific priors like sparsity [10–14] as dis-
cussed previously in Section 1. The major limitation
of L2-norm regularization stems from its over-
smoothing property where, similar to low-pass filter-
ing for de-noising of one-dimensional (1D) signals,
high-frequency and edge-type features of the recon-
structed map are removed while filtering out arti-
facts and noise [3]. Therefore artifacts are removed
and solution is stabilized to the detriment of sharp
transitions and well-resolved inclusions being over-
smoothed. In L2 regularization, the spatial resolu-
tion of the reconstruction algorithm is impaired at
the expense of providing stability. To shed more light
on this matter and provide a better insight into the
resolution of image reconstruction, we study point
spread functions (PSFs), a concept used in resolution
studies to compare the spatial resolving power of
image reconstruction methods applied to linear pro-
blems [23]. For a given medium and data acquisition
geometry, PSF is the reconstruction of an image with
a single nonzero pixel (or nonzero voxel in the case of
FT) in perfect theoretical settings with no noise or
errors present. For FT, an image reconstructed from
noiseless data generated from a fluorophore distribu-
tion that is zero everywhere except at one voxel re-
presents the PSF of that voxel. PSFs reveal certain
qualities of image reconstruction techniques irre-
spective of the level of noise and modeling errors.
They reveal the distortions and artifacts generated
in an image when projected to the data domain and
back to the image domain again through a recon-
struction algorithm. For L2 norm regularization
mathematically formulated as

min
x

‖y −Mx‖2
2 � λ2‖Lx‖2

2; (4)

in perfect noiseless theoretical settings suitable for
exploring PSFs, the reconstructed image xrec can be

related to the true image xorig through the linear
system [22,23]

�M �M � λ2L � L�xrec � M �Mxorig: (5)

Therefore, to calculate the PSFs of L2 norm regular-
ization we need to substitute xorig in Eq. (5) by a vec-
tor with a single nonzero entry and solve for xrec.
In Section 3, we will compute and plot the PSFs to
compare the resolution offered by L2 regularization
and the proposed TV regularization.

3. Proposed Approach

In this paper we propose TV regularization for 3D
reconstruction in FT and explore its advantages over
conventional L2 regularization. TV image recon-
struction is a widely used method in image proces-
sing and has been shown to enhance contrast and
resolution of image reconstruction in medical ima-
ging modalities such as bioluminescence tomography
and emission tomography [24,25]. We investigate
applying two fast implementations of TV regulari-
zation to FT. In this regularization technique, the
penalty term added to the least-squares data fidelity
is the TV norm of the solution as follows:

min
x

‖y −Mx‖2
2x� λ2‖x‖TV; (6)

where the discretized 3D fluorophore distribution
is stacked in the 1D vector x. If u denotes the 3D
continuous scalar fluorophore distribution function,
the TV norm can be expressed as

‖x‖TV �
Z

j∇ujdΩ: (7)

The integral in Eq. (7) is taken over the space
where x is defined, dΩ represents the differential
element for volume, and ∇u is the gradient of u. TV
norm can be viewed as the L1 norm of the gradient
of the 3D fluorescent distribution. Hence in TV reg-
ularization, instead of penalizing the size of the solu-
tion, the size of the variations in the solution is
penalized. Unlike L2 regularization, the edges and
sharp transitions are not smoothed and only highly
oscillatory and variational components are filtered
out in TV regularization [26]. Therefore, TV regular-
ization is expected to yield a better resolution over
conventional regularization techniques. To compare
the resolving power of TV regularization with L2
regularization, we compare their PSFs in a 2D nu-
merical study. In L2 regularization, as discussed
previously, columns of the resolution matrix R �
�M �M � λ2L � L�−1M �M are the PSFs of voxels
(entries) in x. As λ increases, i.e., the strength of
regularization increases, the term λ2L � L becomes
larger, which results in more off-diagonal nonzero
entries in the resolution matrix. Hence, the resolu-
tion diminishes with increase in regularization
strength [22].

In TV regularization the reconstructed fluorescent
map xrec is related to the true fluorescent map xorig by
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�
M �M � λ2∇:

∇

j∇uj
�
xrec � M �Mxorig; (8)

which can be derived by differentiating Eq. (6) and
setting it to zero. Also in arriving at Eq. (8), we as-
sume that j∇urecj � j∇uorigj, considering the edge-
preserving behavior of TV regularization. To obtain
the PSFs for TV regularization, we solve for xrec in
Eq. (8) when xorig is substituted by a vector with only
one nonzero entry. Figure 1 depicts a comparison of
PSFs for TV regularization and L2 regularization of
moderate strengths in a 2D numerical study. For an
off-edge voxel, both regularization techniques create
spreading around the voxel. However, for on-edge
voxel, TV regularization has no spreading across the
edge and hence does not diffuse or smooth it while
L2 regularization creates spreading in all directions
just like it did for off-edge voxels.

We observe in Fig. 1 that the PSF of TV regulari-
zation has almost no smoothing or regularizing effect
for on-edge voxels whereas it has moderate level of
spreading or regularization for off-edge voxels. This
edge-preserving adaptive nature of TV regulariza-
tion can be explained by the fact that [as expressed
in Eq. (8)] the regularizing term or the operator in
TV regularization, λ2∇ · �∇∕j∇uj�, depends on the so-
lution or more precisely the gradient of the solution.
The denominator j∇uj plays an important role in the
performance of TV regularization. It assumes large
values on edges and small values on smooth or flat
regions of u, making λ2∇ · �∇∕j∇uj� to be small for
voxels sitting on the edge and large for those away
from edges or sharp transitions. So TV regularization
can be viewed as an adaptive form of regularization.
For the voxels away from edges in smooth regions
there is strong regularization that damps out oscilla-
tions and high frequency components; for voxels
sitting on an edge, there is weak or almost no regu-
larization and hence the high frequency components

(that make up the edge) are not filtered out. The
PSFs do not possess smoothing around voxels sitting
on edges, and therefore they are preserved when
fed through the regularization algorithm. This edge-
preserving property of TV regularization allows for
higher reconstruction resolution compared to L2
regularization.

To implement TV regularization for FT, we need
to numerically solve the minimization in Eq. (6),
which is a nonlinear optimization problem. We use
two different approaches to solve for x in Eq. (6). We
use a variational method inspired by Rudin–Osher–
Fatemi (ROF) TV de-noising [27] and an iterative
method inspired by linearized split Bregman iteration
[28,29] to solve the optimization problem in Eq. (6).

In the first approach, an ROF-based TV regulari-
zation algorithm is employed to solve the minimiza-
tion problem [27]. Let T denote the continuous to
discrete plus reshape operator mapping 3D fluores-
cent distribution function u to discretized 1D fluores-
cent distribution vector x. Then, Eq. (6) can be
written in terms u of as

min
u

‖y −MT�u�‖2
2 � λ2

Z
j∇ujdΩ; (9)

where λ is a scalar variable that controls the strength
of regularization. Equation (9) is a nonlinear mini-
mization problem in u and we will use the gradient
descent method [27] to solve it iteratively. Hence, we
set the gradient of the objective equal to the differ-
ence between successive iterations divided by the
step size Δt:

u�k�1� − u�k�

t
� 2T �M � �y −MT�u�� � λ2∇ ·

�
∇u
j∇uj

�
:

(10)

The finite difference method is applied to Eq. (10)
to discretize u and solve for it numerically. The

Fig. 1. (Color online) Comparison of PSF of L2 regularization versus TV regularization for (a) on-edge and (b) off-edge voxels: (i) original
fluorescence distribution, (ii) PSF for L2 regularization of a moderate level, and (iii) PSF for TV regularization of a moderate level.
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volume over which u is defined is discretized by a
uniform rectangular mesh, u and its spatial deriva-
tives are approximated by finite difference equiva-
lents [27]. To ensure fast convergence, the initial
guess to this iterative scheme is set to be the solution
of L2 regularization. Further details regarding the
numerical implementation of this algorithm are
provided in Appendix B. The choice of λ and Δt is
fundamental to the convergence of the algorithm.
Δt�t� denotes the time step in the numerical solver
and should be chosen to obtain the highest possible
rate of convergence to the steady-state solution while
meeting certain constraints required for maintaining
numerical stability, e.g., Δt must be small enough
to satisfy the Courant–Friedrichs–Lewy condition
[30]. λ scales the trade-off between the data fidelity
and regularization. To ensure best performance, we
choose these parameters empirically; we perform a
search in the interval ranging from the lowest to the
highest singular values of the system matrix M [3],
and similar to the L-curve method [31], select the
regularization parameter that offers the best trade-
off between the data fidelity and the solution norm
[31]. Optimal selection of the regularization para-
meter is crucial to the successful performance of the
proposed TV regularization method. If λ is too small,
the problem will be under-regularized and the recon-
structions will be artifact-contaminated. If λ is too
large, the problem will be over-regularized and the
accuracy of the reconstructions will be excessively
jeopardized.

In the second approach, we use the recently ex-
plored split Bregman iteration [28,29] to solve the
minimization problem in Eq. (8). Detailed derivation
of this heuristic algorithm for TV minimization can
be found in [32]. Unlike L2 regularization, the optimi-
zation problem describing TV regularization may pos-
sess several local minima, only some of which yield
the desirable solution. Therefore, under certain condi-
tions, an iterative solver may converge to the undesir-
able local minima. In the ROF model, we avoided this
by using the solution to L2 regularization as an initial
guess. For Bregman iteration we cannot use an initial
guess; therefore we need to modify the algorithm to
bias it away from undesirable local minima and
toward the desired solution. We do this by adding
an extra term to the objective of theminimization that
biases it toward a good initial guess: the solution to L2
regularization,uL2. Themodified biasedminimization
problem can be written as

min
u

Z
j∇ujdΩ� μ

2
‖MT�u� − y‖2

2 �
α

2
‖u − uL2‖

2
2;

(11)

where, for the purposes of simplicity in the final form
of the algorithm, the regularization parameter λ is
removed and instead a positive weight μ∕2 has been
adopted for data fidelity. The relaxation parameter α
controls the strength of the bias term that guides the
algorithm to the vicinity of the least-squares solution
to avoid convergence to unwanted local minima of

the TV regularization. To solve the optimization in
Eq. (11), split Bregman algorithm uses the concept
of subgradient space [28,29,32] to determine the direc-
tion and magnitude of descent and repeats this itera-
tively to converge to the solution. Mathematically, the
minimization in Eq. (11) is relaxed to the following
iterative updating scheme by introducing auxiliary
variables bk and dk, which lie in the subgradient
[28,29],

uk�1 � min
u

μ

2
‖MT�u� − y‖2

2 �
α

2
‖u − uL2‖

2
2

� β

2
‖dk −Δu − bk‖2

2; (12)

where β is the relaxation weight of the subgradient
term and determines the direction of the descent as-
sociated with each iteration. A large β would stipulate
a descent in a direction very close to the gradient at
the expense of jeopardizing the data fidelity. α, β, and
μ are selected empirically by performing an exhaus-
tive search (similar to the approach described for the
regularization parameter λ). By setting the derivative
of Eq. (12) to zero, we obtain

�μT �M �MT � αI − β�uk�1

� μT �M � y� αuL2 � β∇ � �dk − bk�; (13)

where Δ denotes the Laplacian operator. Equa-
tion (13) along with updates for the auxiliary vari-
ables [32] describe each iteration of our proposed
biased split Bregman algorithm for TV regularization
applied to FT reconstruction. The system of equations
in Eq. (13) is symmetric positive definite; therefore we
solve it using the preconditioned conjugate gradient
method [33]. Further details regarding numerical
implementation of this algorithm are provided in
Appendix B.

4. Numerical Studies

To compare the performance of our proposed method
with L2 regularization and row-action iterative re-
construction methods, we apply them to 2D simu-
lated FT data and compare the results. Data are
contaminated with different levels of noise. Figure 2
depicts the 2D simulated FT configuration. The two
white blobs represent fluorescent inclusions with
unit quantum efficiency and absorption of μfl �
0.1 mm−1 in an 8 cm by 6 cm rectangular turbid
medium with absorption of μa � 0.01 mm−1 and scat-
tering of μ0s � 1 mm−1, which mimic the optical prop-
erties of biological tissue. The blue squares and red
circles represent sources and detectors. We have
eight sources and eight detectors so the measure-
ment vector y has 64 entries. We use a forward solver
that simulates the propagation of diffuse light in
turbid medium using finite element formulation of
the diffusion equation expressed in Eq. (1) to
obtain y. We contaminate y by three different typical
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levels of additive white Gaussian noise to get 50, 40,
and 30 dB signal-to-noise ratios (SNRs) in the data.
The vector y is then used as the input for reconstruc-
tion using different approaches. Figure 3 depicts
the 3D reconstructions for L2 regularization, ART,
and the two implementations of the proposed TV
regularization. For the three studies, the relaxation
parameters in the split Bregman iteration were
optimized to be α � 520, and β � 2.1. The regulariza-
tion parameters in the two implementations of the
TV regularization were selected based on the data
SNR. The three sets of the regularization parameters
used in the simulation studies were λ � 4.8 × 10−6,
8.9 × 10−5, 9.1 × 10−4, and μ � 1.4 × 103, 1.0 × 103,
7.5 × 102, for 50, 40, and 30 dB SNRs, respectively.
It should be noted that the optimal relaxation pa-
rameters (α and β) are robust and do not depend
on the data SNR, whereas the optimal regularization
parameters (λ and μ) depend on the data SNR and
must be optimized using an L-curve-type search [31]
for each study.

The numerical studies presented in Fig. 3 reveal
the effect of noise on the performance of different
reconstruction algorithms. ART is an unbiased and
nonregularized reconstruction technique, and thus,

it does not converge to the solution for low SNR
data. L2 regularization retrieves the two blobs in
all scenarios as depicted in Fig. 3(i), but the harm
of its spreading and oversmoothing effects on the
resolution of the reconstructed image is evident
particularly for low SNR. As shown in Fig. 3(iii),
ROF-based TV regularization reconstructs the blobs
with high resolution in high SNR scenarios, while for
low SNR scenarios, artifacts show up in the form of
edge distortion and shifting. Split Bregman-based
TV regularization also performs well for high SNR
data and demonstrates a high resolving power, but
for low SNR data, as shown in Fig. 3(iv), artifacts
appear in the reconstructions and distort the shapes
of the reconstructed blobs.

The least squares relative estimation error as de-
fined in Eq. (14) is calculated for each reconstruction
algorithm and plotted in Fig. 4:

ε � ‖x − x̂‖2

‖x‖2
; (14)

where x̂ represents the reconstructed solution. We
maintain that this error does not reflect the edge-
preserving advantage of reconstruction algorithms
as effectively as visual inspection of the recon-
structed inclusions. Also, we computed and plotted
the Michelson contrast [34] for each reconstructed
image, as formulated below, to provide a quantitative
analysis on the resolution improvements offered by
the TV regularization:

C � Imax − Imin

Imax � Imin
; (15)

where Imax represents the mean of the peak fluoro-
phore concentrations in the two reconstructed blobs
and Imin is the minimum fluorophore concentration

Fig. 2. (Color online) Simulated 2D fluorescence tomography
configuration: two fluorescent blobs in a 2D turbid slab with eight
sources and eight detectors around it used for excitation and data
acquisition.

Fig. 3. (Color online) Reconstructed fluorophore distributions for 2D simulated data with (a) SNR � 50 dB, (b) SNR � 40 dB, and
(c) SNR � 30 dB, by (i) L2 regularization, (ii) algebraic reconstruction technique (ART), (iii) time marching ROF TV regularization,
and (iv) iterative Bregman TV regularization.
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on the line segment connecting the location of the
peaks. Figure 5 depicts a plot of contrast values for
each reconstructed image. As plotted in Fig. 4, the
accuracy of the TV regularization reconstructions
is better than ART and no less than the conventional
L2 regularization. Figure 5 demonstrates that the
resolution offered by the TV regularization is higher
compared to L2 regularization due to its edge-
preserving property. ART also provides a relatively
high resolution for high-SNR data because of its
weakly regularizing nature, but its performance de-
grades as the SNR is decreased, and for low-SNR
data, TV regularization has higher resolution and ac-
curacy compared to ART. Overall, Figs. 4 and 5 de-
monstrate that TV regularization is advantageous
to the conventional ART and L2 regularization algo-
rithms and performs better in terms of accuracy and
resolution compared to ART and L2 regularization,
respectively.

5. Experimental Results

We have used a noncontact constant-wave (CW) tran-
sillumination phantom-based FT system for valida-
tion of our proposed method. Figure 6 depicts a
schematic and a picture of the experimental setup
used in this study. A He-Ne 20 mW laser produces
CW light at 632 nm whose power is adjusted and
measured using neutral density filters and a power
detector. The laser light is coupled into a multimode
fiber whose tip lies on the tissue phantom to direct
the light to a point on the tissue phantom surface.
Translation stages are used to change the position
of the tip of the fiber on the surface of the tissue
phantom in order to illuminate it at different loca-
tions. Colored glass filters mounted on a motorized
filter wheel are used to allow for separate sequential
imaging of the transillumination signal at excitation
wavelength and the fluorescent signal at the emis-
sion wavelength. A cooled CCD camera is then used
to capture the filtered data images. The imaged fluor-
escent signal is normalized by the transillumination
signal to calibrate the measurements into the same
scale in a Born normalization fashion [35]. An intra-
lipid-20% liquid tissue phantom [36] that mimics
the optical properties of biological tissue is used for
experimentation. India ink is added to diluted intra-
lipid-20% with a concentration of 0.012% to match
tissue absorption. The phantom has a scattering
coefficient of 3.6 mm−1 and an absorption coefficient
of 0.03 mm−1 at excitation and emission wave-
lengths. The phantom has a thickness of 14 mm, and
a width and a length of 180 mm. We use 36 source

Fig. 4. (Color online) Relative estimation errors for reconstructed
fluorescent distributions corresponding to L2 regularization, ART,
and the proposed ROF and iterative Bregman TV regularization
for data SNR � 30, 40, and 50 dB.

Fig. 5. (Color online) Michelson contrast [defined in Eq. (15)] is
computed and plotted for the reconstructed fluorescent distribu-
tions corresponding to L2 regularization, ART, and the proposed
ROFand iterative Bregman TV regularization for data SNR � 30,
40, and 50 dB.

Fig. 6. (Color online) (a) Schematic diagram of the fluorescent to-
mography setup in the transillumination geometry. (b) Photograph
of the interior of the imaging chamber.
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locations and 81 detector locations (as shown in
Fig. 7) for illumination and data acquisition, respec-
tively. A region of interest in the central part of the
phantom with area of 8 cm × 8 cm is selected for
reconstruction. A tetrahedral mesh with 153,945
nodes and 876,712 voxels is used to discretize the

selected volume. The fluorescent dye used for experi-
mentation is a dimethyl sulfoxide-based 100 μM so-
lution of Oxazine 750 Perchlorate from Exciton, Inc.
(excitation at 632 nm, emission at 700 nm). The dye
solution is placed in two thin glass tubes with thick-
ness of 1 mm. The tubes are immersed in the tissue
phantom with vertical orientation at 3, 6, and 9 mm
depth from the front surface of the phantom imaged
by the cooled CCD camera. The camera is cooled
down to −10°C to minimize dark current noise. Dark
frame images (images with laser being off) are taken
along with each measurement and subtracted from
the data images to minimize stray light and other
unwanted signals.

Figure 8 depicts the 3D reconstructions from ex-
perimental data using L2 regularization and the two
implementations for our proposed TV regularization.
As the depth of the fluorescent inclusions increases,
the measured emission signal becomes weaker and
its SNR decreases. Therefore, stronger regulariza-
tion is required for cases with deeper inclusions.
Figure 8(a) depicts the performance of L2 regulariza-
tion in reconstructing the two fluorescent tubes at
three different depths. While for lower depths with
higher SNR, the reconstructions do not possess much
spreading, the oversmoothing and spreading be-
comes very strong at higher depths with low SNR as
the need for strong regularization increases. ROF-
based TV regularization, as depicted in Fig. 8(b),
performs better in reconstructing deeper inclusions
(from low SNR data). The reconstructed tubes from

Fig. 7. (Color online) Configuration for the experimental phan-
tom based fluorescence tomography. Two fluorescent tubes are
inserted in an intralipid-20% liquid phantom that is excited at
36 source positions (circles) and imaged by a CCD camera that
yields 81 data points (dots).

Fig. 8. (Color online) Reconstructed fluorophore distributions from experimental data where fluorophore tubes are located at (i) 3 mm,
(ii) 6 mm, and (iii) 9 mm depth using (a) L2 regularization, (b) time marching ROF-based TV regularization, and (c) iterative
Bregman-based TV regularization.
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ROF-based TV regularization are better resolved
and localized around their corresponding positions.
Reconstructions from Bregman-based TV regulariza-
tion are depicted in Fig. 8(c). When compared to L2
regularization, results from the Bregman-based TV
regularization have less spreading, and the recon-
structed tubes are distinctly separated. The results
in Fig. 8 reveal the advantages of TV regularization
over L2 regularization in resolving fluorescent inclu-
sions. While results from both methods possess arti-
facts, TV regularization shows a better promise in
recovering and separating lesions and inclusions.

6. Discussion and Conclusions

The numerical and experimental results presented
in this paper demonstrate that TV regularization has
the potential of offering higher resolution and robust-
ness compared to conventional L2 regularization
algorithms and ART. As depicted in Figs. 3 and 8,
2D and 3D reconstructions for both implementations
of our proposed TV regularization algorithm are bet-
ter localized around their corresponding coordinates
and possess less spread. The nonspreading edge-
preserving nature of TV regularization for ill-posed
problems has been a subject of several studies [26,37].
Advantages of TV regularization over L2 regulariza-
tion are analogous in nature to advantages of
wavelet-based de-noising [38] over low-pass filtering
in image processing.While low-pass filtering can filter
out the oscillatory noise in the image, it also diffuses
the edges and sharp transitions in the image making
it blurry and poorly resolved. De-noising through
wavelet thresholding, on the other hand, only filters
out highly oscillatory components in the image while
preserving the edges and sharp transitions.

The optimization problem in TV regularization is
not as easily tractable as L2 regularization and hence
the convergence time for TV regularization is higher
in almost all cases presented in this paper. Among
the two implementations presented, split Bregman
iteration provides a faster convergence than ROF.
ROF is a time-marching algorithm, and therefore it
takes a hundred or more iterations to converge even
when started with a good initial guess while split
Bregman can converge within 20 iterations. How-
ever, the time required for each step of ROF is signif-
icantly less than that in split Bregman, since we need
to implement a preconditioned conjugate gradient
in each iteration of split Bregman. Depending on the
regularization parameter, the preconditioned conju-
gate gradient may converge fast or slow, as its con-
vergence depends mainly on the condition number
[30] of the symmetric positive definite linear opera-
tor in Eq. (13). In other words, in strongly regularized
cases we find that split Bregman iteration is quite
faster than ROF while for weakly regularized cases
they have the same convergence time order. The dif-
ference between ROF and split Bregman iteration
implementation lies in the degrees of freedom asso-
ciated with the gradient of the reconstructed image.
Split Bregman iteration does not prefer a certain

direction for the edges as it deals with each gradient
component separately. However, the ROF imple-
mentation prefers circular and isotropic shapes as
it deals with the magnitude of the gradient vector
not the components separately. The ROF reconstruc-
tions tend to be more circular or cylindrical and
thus isotropic, while split Bregman reconstructions
have edges and borders of various shapes. While this
property makes split Bregman implementation bet-
ter capable of reconstructing various fluorescence
maps, it makes it more prone to edge distortions re-
sulting from noise and errors. This inherent differ-
ence between ROF and split Bregman is why the
results of these two implementations are widely dif-
ferent in our numerical and experimental studies.

Based on the results reported in this work we
conclude that for 3D reconstruction in FT, L2 regular-
ization is remarkably noise-robust and faster than
TV regularization, but it offers poorer resolution.
ROF-based TV regularization provides stable results
with higher resolution than L2 regularization for high
SNR data, but its accuracy diminishes with increase
in noise or error level. Split Bregman-based TV reg-
ularization performs faster than ROF and offers
better resolution than L2 regularization. However, for
low SNR data its performance is not as robust
as either L2 regularization or ROF-based TV
regularization. Therefore, for high SNR data split
Bregman-based TV regularization can provide fast
reconstructions with improved resolution while
ROF-based TV regularization can be used for im-
provements in reconstruction resolution for lower
SNR data.

In summary, we demonstrated two implemen-
tations of the TV regularization for FT. The main
advantage of the TV regularization over more con-
ventional L2 regularization is that it does not need
to sacrifice resolution for stability. L2 regularization
methods compromise resolution for stability; weakly
regularized solutions have artifacts such as oscilla-
tions and impulses around the reconstructed maps,
and the strongly regularized solutions have smooth
overspread reconstructed maps as depicted in
Figs. 3(i) and 7(a). In TV regularization, we observe
that the edge preserving nature of the algorithm
does not allow spreading in the solution. However,
the locations of the edges in the solution may move
as noise and error levels increase. In other words,
strongly TV regularized solutions from noisy data
with relatively low SNR (SNR < 30 dB) do not pos-
sess spreading and retain edges and sharp transi-
tions while the presence of noise can affect the
location of the edges and make them deviate from
the original distribution. This can be seen particu-
larly in Figs. 3(iii) and 3(iv). Therefore, the types
of artifacts present in TV regularization for FT are
inherently different than L2 regularization. While
damping out artifacts in L2 regularization results in
poor resolution, in TV regularization it results in
distortion of the shape and geometry of the recon-
structed fluorescence maps. In addition, the form

8224 APPLIED OPTICS / Vol. 51, No. 34 / 1 December 2012



of noise-induced distortions in the solution of TV
regularization differs between the two implemen-
tations. The ROF-based implementation prefers
circularly shaped reconstructions and is thereof less
prone to edge distortion, as depicted in Figs. 3(iii)
and 8(b). Split Bregman iteration is more affected
byedge distortions and especially for low SNR mea-
surements, the noise-induced edge distortions may
severely impair the shape and borders of the recon-
structed maps as depicted in Figs. 3(iv) and 8(c). The
resolution offered by these two implementations,
however, is higher than L2 regularization for high or
low SNR measurements, as TV regularization does
not compromise resolution in securing stability.

Appendix A: Finite Element Modeling

Two coupled diffusion equations describe the dynamics
of a fluorescence tomographic scan, one for the diffu-
sion of excitation photons and one for the diffusion of
fluorescent photons. The coupled equations are formu-
lated as below,

−∇ ·D�r�∇Φexc�r� � μa�r�Φexc�r� � qexc�r�; (A1)

−∇ ·D�r�∇Φem�r� � μa�r�Φem�r� � ημflc�r�Φexc�r�;
(A2)

where Φexc�r� is the average fluence of excitation
photons at location r, qexc�r� is the power density of the
excitation laser or LED source used for illumination of
the tissue at location r (as a result, qexc�r� is zero inside
the tissue and non-zero at the boundary source loca-
tions), Φem�r� is the average fluence of the fluorescent
light at location r, η is the dimensionless quantum
efficiency of the fluorescent dye, μfl is the per molar
fluorescent absorption coefficient, and c�r� is the molar
concentration of the fluorescent dye at location r. As
formulated in the right-hand side of Eq. (A2), the
source intensity term for the emission diffusion equa-
tion is the product of the quantum efficiency, the per
molar fluorescent dye absorption, the fluorescent
dye concentration, and the excitation fluence. The
boundary conditions accompanying Eqs. (A1) and (A2)
are modified Robin-type boundary conditions [39] ex-
pressed as

Φ�ξ� � 2AD�ξ�n̂ ·∇Φ�ξ� � 0; (A3)

where ξ is any given point on the boundary, n̂ is the
normal vector to the boundary surface at ξ and A is
a dimensionless constant that accounts for the index
mismatch and internal reflection at the boundary.

Mathematically, the fluence function Φ�r� is ap-
proximated by the FE basis functions denoted ψ j,
j � 1;…; N, (where N is the number of mesh nodes
and hence the number of basis functions) as follows,

Φh�r� �
XN
1

Φjψ j�r�; (A4)

whereΦj denotes the weight of the j-th basis function
ψ j�r� in the expansion and Φh�r� is the projection
of Φ�r� onto the space spanned by the FE basis
function. In applying the Galerkin approach to diffu-
sion equation, the weak formulation of diffusion
equation can be derived for each node indexed
j � 1;…; N as below [39]

Z
ψ j�r��−∇ ·D�r�∇� μa�r��Φh�r� �

Z
ψ j�r�q�r�.

(A5)

Integration by parts and substitution of Φh�r� from
Eq. (A4) transforms Eq. (A5) to the following discrete
matrix equation [39]

�K�D� � C�μa��Φ � Q − β; (A6)

where

Kij �
Z

D�r�∇ψ i�r� ·∇ψ j�r�dΩ; (A7)

Cij �
Z

μa�r�ψ i�r�ψ j�r�dΩ; (A8)

βi �
Z

ψ i�r�Γ�r�d�δΩ�; (A9)

Qi �
Z

ψ i�r�q�r�dΩ; (A10)

and dΩ and d�δΩ� denote the differential elements
for volume and boundary surface of the medium.
Also, Γ�r� is the surface exitance expressed mathe-
matically as below and simplified using Robin bound-
ary condition [39]

Γ�ξ� � −cD�ξ�n̂ ·∇Φ�ξ� � cΦ�r�
2A

; (A11)

which when substituted in Eq. (A6) yields

�K�D� � C�μa� � F�A��Φ � Q; (A12)

where

Fij �
−c
2A

Z
ψ i�r�ψ j�r�d�δΩ�: (A13)

Therefore, the expansion coefficients populated in
the vector Φ can be obtained by solving the linear
system expressed in Eq. (A11) and then substituted
in Eq. (A5) to get Φh�r� which approximates the de-
sired Φ�r�. In the case of FT, where there are two
coupled diffusion equations for every source position,
the FE formulation yields two matrix equations as
below
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ZeΦ�i�
e � Q�i�

e ; (A14)

ZmΦ�i�
m � Q�i�

m ; (A15)

whereΦ�i�
e (Φ�i�

m ) and Q�i�
e (Q�i�

m ) are fluence and source
vectors at the excitation (emission) wavelength, re-
spectively, when i-th source location is used. In FT
only one source location is illuminated at a time. The
matrix Ze (Zm) is the system matrix obtained from
the finite element method (FEM) formulation at
the excitation (emission) wavelength. The excitation
source vector, Q�i�

e , is nonzero only on the mesh nodes
that neighbor the i-th point source location. Equa-
tion (A14) is the discrete FEM version of the forward
problem and its solution for any given source location
constitutes a Green’s function.

The emission source vector, Q�i�
m , can be mathema-

tically expressed as follows:

Q�i�
m � ημfldiag�Φ�i�

e �x; (A16)

where for any N × 1 vector g, diag(g) is defined as
an N ×N diagonal matrix with elements of g popu-
lating its diagonal entries. Also, x represents the
projection of fluorophore concentration function c�r�
onto the FEM basis functions and therefore lists the
fluorophore concentration at each node of the mesh.
Let Ns and Nd denote the number of source loca-
tions and detector locations, respectively. Hence for
every source location, there are Nd measurements of
Φ�i�

m on the boundary of the medium. Let y denote the
NsNd × 1 vector that lists the boundary measure-
ments of Φ�i�

m for all source locations i � 1;…; Ns.
From Eqs. (A14), (A15), and (A16), we have

y �

2
64

Z̄ −1
m ημfldiag�Z−1

e Q�1�
e �

..

.

Z̄ −1
m ημfldiag�Z−1

e Q�Ns�
e �

3
75x; (A17)

where Z̄−1
m is a submatrix of Z−1

m that only includes
the Nd rows that correspond to the detector loca-
tions. As a result, Eq. (A17) establishes a linear re-
lationship between boundary detector measurements
of emitted fluorescent signal and fluorophore distri-
bution in the turbid medium. Considering detector
noise, shot noise, and modeling errors present in FT,
the linear model in Eq. (A16) can be expressed as
below:

y � Mx� n; (A18)

where e is the additive NsNd × 1 error vector encom-
passing the modeling errors and noise, M is the
NsNd × K system matrix (K being the number of
mesh nodes) formulated in Eq. (A17), x is the K × 1
fluorophore concentration vector, and y is the
NsNd × 1 measurement vector. Solving for x in
Eq. (A18) from measurements of y, prior knowledge
of M, and statistical properties of n constitutes the
inverse problem of FT.

Appendix B: Computational Details of TV
Regularization Algorithms

Iterative ROF TV regularization algorithm pseudo-
code is as follows:

1. Initialize u�0� � T � �M �M � λ2I�−1M � y
2. While ‖un�1−un‖

‖un‖
< eps

2.1 Map u to a cubic mesh by interpolation
2.2 Approximate �uxuyuzuxyuxxuyyuxzuyzuzz�

using finite difference
2.3 Setd�u2

xuyy�u2
xuzz�u2

yuxx�u2
yuzz�u2

zuxx�
u2
zuyy−2�uxuyuxy�uxuzuxz�uzuyuzy�∕�u2

x�
u2
y�u2

z�1.5
2.4 Map u to a tetrahedral meshby interpolation
2.5 u�n�1� �u�n� �Δt�T �M ��y−MT�u��� λd�
2.6 u�n�1� � max�0; u�n�1��

3. End
4. xfinal � Tu�n�1�

Iterative split Bregman TV regularization algo-
rithm pseudo-code is as follows:

1. uL2 � T � �M �M � λ2I�−1M � y
2. Initialize u0 � T �M � y
3. While ‖uk�1−uk‖

‖uk‖
< eps

3.1 uk�1�PCG�μT �M�MT�u��αI−βΔ, μT�
M � f � αuL2 � β∇T

x �dk
x − bkx� � β∇T

y �dk
y −

bky� � β∇T
z �dk

z − bkz ��
3.2 Map u to a cubic mesh by interpolation

3.3 sk�
������������������������������������������������������������������������������������
jbkx�∇xukj2�jbky�∇yukj2�jbkz�∇zukj2

q
3.4 dk�1

x � max �sk − 1
λ ; 0�∇xuk�bkx

sk

3.5 dk�1
y � max �sk − 1

λ ; 0�
∇yuk�bky

sk

3.6 dk�1
z � max �sk − 1

λ ; 0�∇zuk�bkz
sk

3.7 bk�1
x � bkx − dk�1

x �∇xuk�1

3.8 bk�1
y � bky − dk�1

y �∇yuk�1

3.9 bk�1
z � bkz − dk�1

z �∇zuk�1

3.10 Map u to a tetrahedral mesh by interpo-
lation

4. End
5. xfinal � Tu�k�1�
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